
AD-Sulb 888 PITTSBURGH UNIV PA INST FOR STATISTICS AND APPLICATIONS F/B 12/1
A CONCEPT OF NEGATIVE DEPENDENCE USING STOCHASTIC ORDERING. (U)

NOV 81 H W BLOCK, T H SAVITS, M SHAKED NOO0iV-76-C-0839

UNLSSIFIED TR-81-34 NL

IEEE..']



A CONCEPT OF NEGATIVE DEPENDENCE

USING STOCHASTIC ORDERING

by

deHenry W. BlockI'3

Thomas H. Savits
1'3

and

Moshe Shaked
2'4

November 1981

Techuical Report No. 81-34

Institute for Statistics and Applications
Department of Mathematics and Statistics

University of Pittsburgh
Pittsburgh, PA 15260

JUL 1 3 19821

Approved for public relc H
~~~~~~~~DitriUbution Unlimlt~ | ........ . ... .

LJ I Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh,
__j Pennsylvania 15260.

2 Department of Mathematics, University of Arizona, Tucson, Arizona 85721.
3 Supported by ONR Contract N00014-76-C-0839.

4Supported by NSF Grant MCS79-27150.

82 0 7 3 10
- ,,-



A CONCEPT OF NEGATIVE DEPENDENCE

Acaslon For USING STOCHASTIC ORDERING

NTIS CPA&I

El 'A ", 
by

J.... ~cz~t~Henry W. Block

S.......Thomas H. Savits

A'!d :1. ' 3. e: and

Moshe Shaked

o~ ic

ABSTRACT

A concept of negative dependence called negative dependence by

stochastic ordering is introduced. This concept satisfies various closure

properties. It is shown that three models for negative dependence satisfy

it and that it implies the basic negative orthant inequalities. This

concept is also satisfied by the multinomial, multivariate hypergeometric,

Dirichlet and Dirichlet compound multinomial distributions. Furthermore,

the joint distribution of ranks of a sample and the multivariate normal

with nonpositive pairwise correlations also satisfy this condition.

The positive dependence analog of this condition is also studied..



1. Motivation and Preliminaries

In Block, Savits and Shaked (1982) an intuitive concept of negative

independence is introduced. Essentially it requires that the sum of

components for a random vector be constant. This condition is naturally

satisfied by the multinomial, multivariate hypergeometric, Dirichlet,

and Dirichelet compound multinomial distributions. Furthermore certain

multivariate normal distributions with pairwise negative correlations

(e.g. the symmetric ones) can be seen to satisfy this property, but it

is not a natural one for the multivariate normal. In this paper we

introduced a concept of negative dependence called negative dependence

by stochastic ordering which is natural for the multivariate normal.

It is easily shown that every multivariate normal whose components are

pairwise negatively correlated satisfies this-condition. Furthermore all

of the other distributions mentioned above satisfy this condition.

Finally three intuitive models are seen to satisfy this condition.

This new condition of negative dependence also satisfies the basic

intuitive requirement for negative dependence that if a set of negatively

dependent random variables is split into two subsets in some manner then

one subset will tend to be large when the other subset is small. See also

Alam and Lal Saxena (1981) and Jogdeo and Proschan (1981) and references there.

A random vector X is said to be stochastically decreasing in the
st

random vector Y (notation: X + Y) if the conditional expectation

EEg(X) I- y] is nonincreasing in y whenever g is a nondecreasing Borel

measurable function such that the above conditional expectations exist,

The basic concept of negative dependence to be discussed here is

defined by requiring a random vector T to satisfy

"Wi
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As will be seen in Sections 3 and 4 our condition is often zasily veri-

fiable, it arises naturally in many applications, it implies the orthant

inequalities

n
(1.2.a) P(TI1-t I -... ,n <tn5 < n P(Ti _ti) ,

i=l
n

(1.2.b) P (TI> tip,...,T n > t n) I_ P(T >t ) ,i=l

and it enjoys some closure properties which enable us to derive the

inequalities (1.2) for many well known distributions.

The use of the modern theory of stochastic ordering will throw a

new light on the underlying ideas of Mallows (1968) and Jogdeo and Patil

(1975) who derived inequalities (1.2) for some well known distributions.

The positive dependence analog of (1.1) is also of some interest.

It will be discussed in Section 5.

In the following "increasing" stands for "nondecreasing" and "decreas-

ing" for "nonincreasing". Vectors In R n are denoted by t- (tl,... ,tn)

and t <t means t t, i- l,...,n. Similarly t< t means t < ti

i-1,...,n, and 0- (0,...,0). A real function on R7 will be called in-

creasing if it is increasing in each variable when the other variables are

held fixed. Whenever we write an expectation we assume that it exists

and whenever an expectation or a probability is conditioned on an event

such as {Y-y} we assume that y is in the support of Y.

The following definitions and results from the theory of stochastic

ordering will be used.
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A random variable X is said to be stochastically smaller than the
st

random variable Y (denoted by X< Y) if P(X> x)<P(Y> x) for every real x.

The random vector X- (XI,. .. ,X n) is said to be stochastically smaller than

st st
Y " (YI,'Yn) [denoted by X < Y] if g(X) < g(Y) for every ge C where C

is the class of Borel measureable increasing functions on Rn. If X and
st

Y have the same distribution then we write X - Y. It is well known that
st

X < Y if and only if

P(XEU) IP(YcU) for every upper Borel set U in En.

(U is an upper set if xE U and x<y implies that yE U.) According to

Kamae, Krengel and O'Brien (1977), we need only consider open upper sets
st

U in Rn. It is also well known that if (X1, ... Xn) < (Y1 ' o... Yn
) then

for any subcollection 1<i1 <... <ik <'

st(1 3)( ,..., ) (Yi ...,Y k) .

1 ( k ,.

st st
Also, if X< Y,...,X a-Yn and if XI,...,X n are independent and

Yi "."."Yn are independent, then

st
(1.4) (X , ...,x ) n (Yl''".' n "

Definition 1.1. The random variables TI,... ,Tn for the random vector T (or

its distribution) are said to be negatively dependent through stochastic

ordering (NDS) if (1.1) holds.

Note that NDS implies both NUOD and NLOD and these implications are

sharp. To see this, use methods similar to Barlow and Proschan (1975),

p. 143, and property (1.3) to show that (1.1) implies for i-1,...,n-1,
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st(1.5) [(Tip,...,T i )  Ti+l > t i+l I > '(Ti,-...,IT i )  T Ti+l > t i+l "

whenever t < t I . (Although Barlow and Proschan assumed the existence

of a density, a modification of their proof works in the general case.)

But from (1.5) it follows that

P (TI1> til,....,T n > t n ) < P(TI1> t i .... ITn_ 1 > tn I ) P(T n > t n )

n
P(T 1 > t,...,IT_ > P(Ti > ti)

in- i

n
<...< P(Ti> ti)

i=l

which proves (l.2b). The proof of (1.1) -> (1.2.a) is similar.

To justify calling (1.1) a "condition for negative dependence" we

have to show that it implies

(1.6) COV(TiTj) <0, l<i < j <n,

when the second moments exist. From (1.2.a) it follows that

P(Ti> ti, T > t ) < P(Ti> ti) P(Ti > ti) and it is well known that this

inequality implies (1.6) [see e.g., Lehmann (1966)].

2. Closure Results

Preservation theorems are useful for identifying negatively dependent

distributions or for constructing new negatively dependent distributions

from known ones. In this section we discuss some preservation results.

Their use will be illustrated in Sections 3 and 4.

Theorem 2.1. If T,...,Tn are NDS and if *li,...,n are strictly increasing

functions then *I(T1 ),..., 4 (Tn) are NDS.
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Theorem 2.2. If (T1,.. .,Tn) and (S1,... ,Sn) are independent and are NDS

then (T1,...,T, S S..... n) is NDS.

The proofs of these theorems are straightforward and will be omitted.

The following preliminaries are needed for the statement of Theorem

2.3; a thorough discussion can be found in Karlin (1968). A bivariate

function K(-,-) which is defined on S1 x S2 (where S1 and S2 are subsets

of R) is said to be totally positive of order 2 (TP2) on SIx S2 if

K(x,y)> 0 and if

K(x,y) K(x' ,y)> K(x,yt) K(x' ,y) whenever x < x', y .

A univariate density f is said to be a Polya frequency function of order 2

(PF2) if f(x-y) is TP2 on R x1R. Equivalently, f is PF2 if it is log concave.

A probability function f is PF2 if f(x-y) is TP2 on Nx N where N= {....-i,0.i,...}.

Theorem 2.3. Assume that (T1 .... ,Tn ) and (S1. .... Sn ) are independent and

NDS. If all the univariate marginal densities (with respect to Lebesgue

measure), or probability functions in the discrete case, of S and T are

PF2, then (TI+S,...,T n+S
n) is NDS.

Remark. Karlin and Rinott (1980) have introduced a condition of negative

dependence and have proven a related result for their condition. They

assumed that S and T satisfy their condition and that they have PF2 mar-

ginals, and they showed that then S+T satisfy some inequalities that are

stronger versions of (1.2.a) and (1.2.b).

The proof of Theorem 2.3 is easily obtained from the following lemmas.

Lemma 2.1. Let X,...,Xn be independent random variables with PF2 densities

or probability functions. Then
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st
(2.1) (X1 ... 9An) + X1+...+Xn

Proof. See Efron (1965).

Lemma 2.2. Let X- (Xl,...,Xn) and Y- (Y ,...,Yn) be independent and

assume

st
(2.2) (XI,...,X 1) x

and

st
(2.3) (Y .. Y n-I) 4- Yn"

Furthermore assume that Xn and Yn have PF2 densities or probability func-

tions. Then

st
(X1 +Y,...,X_+_ ) X+Yn .

Proof: Clearly, for any increasing function g,

E[g(XI+YI,...X_+Y 1  ) I Xn+YnZn z E[O(Xn,n) Xn +Yn -Zn

where O(xnnyn ) - E[g(X+Y 1 ,... ,X _I+y n-1 I X -xn, Y yny. However,

O(xny n) decreases in xn and in Yn because of (2.2), (2.3) and independence.

Thus, by Lemma 2.1, E[O(Xn,Y n ) IXn+Yn-zn J decreases in Zn.

3. Models

There are various models which give rise to the NDS condition. The

standard negatively dependent distributions such as the Dirichlet, multi-

nomial, multivariate hypergeometric, multivariate negative binomial and

various negatively correlated normals are easily seen (below) to be generated

by such models.

- . rj
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Model 1 if XOX 1,-..,X nare independent random variables with PF 2 den-

sities or probability functions then the random vector (T ,...,T) which
n

has the distribution determined by the equation

St

(T19 ...PT) [(X1, ... x )la X +a X. +1a X z]
n n 0 11***n n

for some constants a > 0, i 0,. .. n, and z is NDS.
i

Proof. Let g be an (n-l)-variate increasing function and let t nbe a point

in the support of T n. Then using the fact that (Xi.,... IX ) and Xn are

independent,

b(t) n E~g(TP.. .,T 1 ) IT t n

.E~g(X ... x n)JX +...n'a + m-at).l+ nXn

E 1'',..xn-liO~O.. n-1. n-.=za n tn 1

Let Zi za i i -0,,...,n-I and note that ZOZ 1* Z - are independent

with PF 2 densities or probability functions. Define the function i by

x1 xn-i

b(t) n E~g(Z1, ....,z -1)1Z 0 +Z I+...+Z 1-l z- a nt n.

st

By Lemma 2.1, b(t n decreases in t nbecause a n> 0. That is, (T..., T- 4-Tn

The other conditions of (1.1) can be shown similairly. 1

Model 1 is essentially equivalent to the structure condition of Block,

Savits and Shaked (1982). Various other properties that are enjoyed by

this model are discussed there.
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Model 2 If X1 ,... ,Xn are independent, identically distributed random

variables having either a continuous or a discrete distribution function F,

then the random vector (TI,...,T), which has the distribution determined

by the equation

st
(3.l.a) (T1 ,....T - [(X I , .... )Imin(X, .... X -z

or by the equation

st

(3.1.b) (T1 ... ,T) [(Xl,...,Xn)lmax(X1 ,... ,Xn ) n z

for some constant z, is NDS.

We will prove the above only for the case where F is assumed to be

continuous. The discrete case is handled similarly.

The following lemma is directly verifiable.

Lemma 3.1. Let XI,. .. ,Xn be independent, identically distributed random

variables with continuous distribution F. Then for k=0,1,...,n and z

in the support of F,

(3.2) P(XI>X I ... Xn>XnI min X z) n k 1 ((n-+ l))
l<i<n n Fk(z) j.l

(n-k) (n-k+l) (1) (2) (n)for x < z < x -  , where x < x <...<x are the ordered xi's

and we set M -,(n+l) = +w, and the right hand side of (3.2) equal to
zero for k-0.

Notation. We will sometimes find it convenient to denote the right-hand

side of (3.2) by 0n(x;z).

CorollarZ. For the XI ...,Xn as above, we have that

St
(XI,...,X n  t in X i .

l<i<n
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Proof. We first claim that if g is any bounded Borel measureable

function, then

E~g(X ,...,Xn) min X, - ~)

where

b i(z) f o... f g(ylp ... yil~z~yi+lv***"yn) fli dF(yjlz)
jo#

and f(ylz)- F~y)/P(z) for y> z and one otherwise. Since this is true

for indicator functions g of sets of the form (x 1,M)x... .X(x n,0) by

(3.2), the claim follows. Thus to prove our result we need only show

that each b is increasing in z whenever g is an increasing function.

But since P(yjz I)< F(yI 2 ) if z 1<z 2 (z i in the support of F), this

fact readily follows.

The next lemma is easy to prove.

Lemma 3.2. Let X be any random variable and Z be any random variable

for which ECZIXJ is defined. If E[ZIX-xJ-O(x), then

(X) if X< a
ECZIXAaJ =Ica)i Aa

where c(a) -E[4 (X); X >a]/PCX> a) if P(X> a) > 0 and zero otherwise.

Corollary. Suppose that ECZIX=x] - O(x) is increasing in x. Then if

PCX> x] > 0, E[ZjXAa-x3 is decreasing in a> x.

Proof. Let PCX> x> 0 and suppose a2 > a,1 x. Then

E[ZIXa,.Mx x) if a 1 >X

E[ZIXa~ 7 x) c(x) if alx

while

EEZIXAa 2 % mx) OW~
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according to Lemma 3.2. Hence we need only show that (x)< c(x).

But

C(x) =  i E[O(X): X> x] > (x)
P[X>x-

since is increasing.

Lemma 3.3. Let X1 ... ,Xn be independent, identically distributed random

variables with continuous distribution function F. Suppose that for some
st

z, (Y .... Yn) = [(XI ..... Xn)i min Xi . z]. Then
1<i<n

st

[(Y 1 1 ... ,Yn-1)IY
n =wI= [(XI ...,X nl ) (min X i  A W- z].

l<i<n-I

Proof. Let y= (yl,...,yn-1 ) and yn be given. Then according to Lemmas

3.1 and 3.2, we have

P(Y I>Yl , .... PYn-l>Yn-l, Y n>Yn)  n n((y,y n);z),

where s ((y,y );z) is the function given by the right hand side of (3.2),and
n -n

0 ~(y~z) if Z<Y
(3.3) P(XI > yl,...,Xnl>Yn-l

I min (Xi) A yn. z) - f

l<i<n-i Lc(yn) if z_ Yn"

In this case,

Cy P(XI1>Y11 ..... Xn-l >Y n-l Xl Vn,'' ',Xn- =n F (YlVYn) ... F(YnIlVYn)

n P(XI1 yn ' . Xn->yn) P n-i (yn)

So if we denote the left-hand side of (3.3) by Ay n), we need only show

that for all yn9
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(3.4) EE4(Yn; Yn>y - Cn((y,Yn);z)

Using the fact that

1 if t<z

n n-i (t) if t>z,

n F(z)

which follows from (3.2), the validity of (3.4) follows readily.

Proof of claim of Model 2. We will show that if T has the representation (3.l.a),
st

then (Ti,...,T i_,Ti+I,..,Tn) + Ti for i-n. The other cases follow

similarly. But this is a direct consequence of Lemma 3.3 and the corollaries

following Lemmas 3.1 and 3.2. Similarly one shows that if T has the representation

(3.1.b), then T is NDS.

Model 3 A model (suggested to us by Steve Arnold) which arises quite fre-

quently in statistics is defined by the equation

st* (3.5) (T1,...,n) (X _x,...,X-)

where X1 ,... ,Xn are independent, identically distributed random variables
-1 n

and X - n Xi. It is easily seen that if X is normal, i-l,...,n,
i- "

then (T1,...,Tn) is multivariate normal with negative correlations and by

Block, Savits and Shaked (1982) it satisfies the structure of Model 1. It

is tempting to conjecture that a similar result holds for other random

samples since the correlations are always negative. However if X- (X1,X2,X3) and

if Xi can take on only two values, 0 and 1, and if P(Xi 0) is close to 0,

i-1,2,3, then the random vector (T1,T2,T3) of (3.5) need not even satisfy

(l.2.a) or (l.2.b).
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4. Examples

The multinomial, the multivariate hypergeometric, the Dirichlet and the

Dirichlet compound multinomial distributions are NDS because they are of

the form of Model 1, as is shown in Block, Savits and Shaked (198). Some

other examples are listed below.

Example 4.1. The multivariate normal distribution with nonpositive correlations

is NDS as can be verified by writing down explicitly the conditional distri-

butions described in (1.1). This fact should be contrasted with results

of Karlin and Rirott (1980) and Block, Savits and Shaked (1982) which show

that some (but not all) multivariate normal distributions with nonpositive

correlations satisfy various conditions of negative dependence.

Example 4.2. Mallows (1968) claimed, without proof, that convolutions of

n-variate multinomials with possibly different sets of parameters satisfy

(1.2.a) and (l.2.b). The fact that every multinomial distribution is NDS

and Theorem 2.3 provide a proof of this claim. Clearly, similar results

hold for the other NDS distributions.

Example 4.3. Jogdeo and Patil (1975) showed that the joint distribution

of the ranks of any sample from a continuous distribution satisfies (l.2.a)

and (l.2.b). It is not hard to show that this distribution is actually

NDS. This example can be used to show that the class of NDS distributions

contains some important distributions which do not satisfy the "R2 in pairs"

condition of Block, Savits and Shaked (1982) and the S-MRR2 condition of

Karlin and Rinott (1980).

" - ... . .. " ' " ' ;" " - ' ' I
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5. A Positive Dependence Analog

We will say that the random variables TI,. .,Tn (or the random vector T

or its distribution) are positively dependent through stochastic ordering

(PDS) if

st
(5.1) (TI ....,T iITi+I, ... ,9T n ) + Ti , i-l.. n

Although a multitude of concepts of positive dependence has been dis-

cussed recently (see, e.g., Barlow and Proechan (1975), Ch. 5, Shaked (1977,

1982) and Block and Ting (1981) and references there) it is somewhat surpris-

ing that (5.1) has not received any attention in the literature. In this

section we will briefly mention some properties of this concept and where

it stands in relation to other well known concpets.

Theorem 5.1. If T is PDS then

n
(5.2.a) P(TI<_tI,...,Tn <t n)> ]T P(Ti ti),i-

n(5.2.b) P(TI1> tl, .... T n> tn) > r P(T i>ti).
i-

The proof of this result is similar to the proof that the inequalities

(1.2.a) and (1.2.b) follow from (1.1). The details are omitted.

Let I and I' be two intervals on the real line and denote I< ' whenever

xE I, ye I' implies x< y. If T is PDS and g is an increasing (n-l)-variable

function then

E g(T i ,...,T n -d x I (Tn ) E X I , (T nd

(5.3) <_ E g (TI,...,Tn 1) I, (Tn) E xI(Tn )
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whenever I< ' where XA denote the indicator function of A. Inequalities

such as (5.3) are sometimes useful. Using them, an alternative proof of

Theorem 5.1 is obtained.

Theorem 5.2. Assume that (Ti,...,Tn) and (S.,...,Sn) are independent and PDS.

If all the univariate marginal densities, or probability functions of T and

S are PF2 then (T1 + S1 .... + Sn) is PDS.

The proof of this theorem is similar to the proof of Theorem 2.3. We

mention that positive dependence analogs of Theorems 2.1 and 2.2 can also be

stated and easily proven.

st
Theorem 5.3. Assume that T satisfies T (i+l)t (T (1), . T (i)) for i-l ,...,n-1

for every permutation n of {l,....,n} [in other words, assume that T (1), ... ,T (n)

satisfy the CIS condition of Barlow and Proschan (1975), Ch. 5, for every

premutation n]. Then T is PDS.

st
Proof. Let g be an increasing (n-l)-variate function. Since T1 t(T2,T3 ... .,Tn)

it follows that

E[g(Tt2',t3,...,t nIT 2 -t2,...,Tn_ l f tn l ,Tn u tn] + t2 . . n .

st
Since T2 t (T3,...,T n) it follows that

E[g(TiT 2, t3,...,tn-1) IT 3 = t 3P,...,T n_1  t tn-lT n = t n

-E E[g(T1,T 2, t3, " ... tn-l)IT 2, T 3 f = 3,...,9T n_ =m t n-lT n - t n

IT3 -t 3 , . . T n _- nt ,T n t n I t3' .... n .

Continuing this way one obtains that

E[g(TI ... )T - t] + t n

l'~'n- n n
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which proves (5,1) for i-n. The proof for i-1,...,n-1 is similar. (I

It is well known that the CIS condition of Barlow and Proschan (1975)

implies the association condition of Esary, Proschan and Walkup (1967).

Association implies various positive dependence conditions of Shaked (1982)

which in turn imply (5.2.a) and (5.2.b). The following example shows that

the PDS condition does not imply any of the above except (5.2.a) and (5.2.b).

Example 5.1. Let X- (X1,X2,X3,X4) be a vector of binary random variables

with probabilities P(X- (0,0,0,0))-4/24, P(X- (0,1,1,1))-P(X -(,O,,1))-

P(X- (,,0,1))-P(X- (,,,0))-P(X- (iiii))-2/24 and the probabilities

of any of the other ten outcomes are all 1/24. Tedious computation shows

that X is PDS. However Cov(min(X,.X2), min(X 3.X4 ))- - 1/576 hence Xl,.... 4

are not associated and do not belong to the family FPD(F1 ) of Shaked (1982).

Since, in this example, Cov(min(Xi,X2 ), min(X 3 X4)) -

P(X1 +X 2 > 1.5, X3 + X4 1.5) - P(XI+X 2 >1.5) P(X3 +X 4 >1.5) it also follows

that X does not belong to the family PD(A2) of Shaked (1982). Thus, X

does not belong to any of the families of Shaked (1982 except for the family

FPD(F2).

Example 5.2. Let X be a multivariate normal random vector with nonnegative

correlations. By explicitly writing the conditional distributions described

in (5.1) it is easy to see that X is PDS. This should be contrasted with the

fact that X need not be CIS. Recently it was proven by Pitt (1982) that X

above is associated.
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